Development of a Socially Aware Demand Response Algorithm for Management of Low Voltage Distribution Networks

Kurt Lucas, s4479578, Electrical Engineering Honours Thesis Supervised by: **Gayan Lankeshwara**, **Rahul Sharma**

Key Phrases: Dynamic Operating Envelope (DOE), Demand Response (DR)

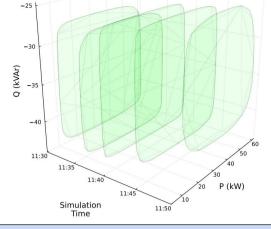
Extending Work by Gayan Lankeshwara on DOE Aware Demand Response.

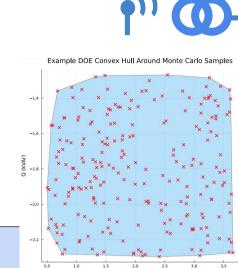
Project Goals:

- Validation of DOE Software and Formulation
- Validation of DOE Aware DR
- Application to DOE Construction and DR to a Larger Real Network from EQL
- Assessment/Development of Socially Aware Demand Response

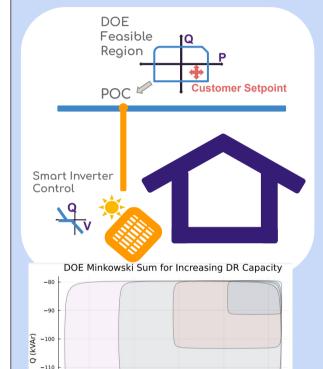
Software Re-implemented Using:

- Julia Programming Language
- OpenDSSDirect.jl
- JuMP and Ipopt

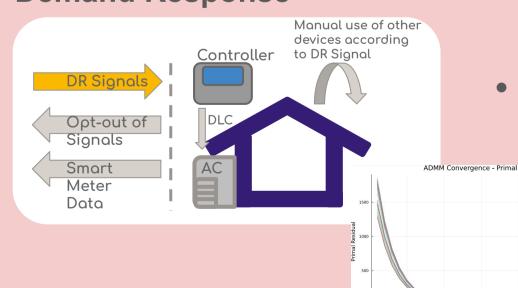



JUMP

Upgrade in Performance of simulation from:


~15-20min to ~5min

New network of 144 customers from 105



Dynamic Operating Envelopes

- Dynamic Limits assigned to customers to mitigate
 effects of distributed generation (PV)
- Acts as bounding region for DR capacity
 - Larger area = more capacity for response
 - Assigning larger area to socioeconomic locations with more capacity for response allows more upstream flexibility
- Constructed through:
 - Sampling the P-Q space
 - Validating against breaching of voltage limits (in QLD +10% -6% V p.u.)

Demand Response

- Customer DR requests for Generation/Consumption financial benefit to customer
- Solved Using Alternating Direction
 Method of Multipliers (ADMM):
 - Guaranteed convergence with convex optimisation problem